A real-coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization
نویسندگان
چکیده
This paper presents a real jumping gene genetic algorithm (RJGGA) as an enhancement of the jumping gene genetic algorithm (JGGA) [T.M. Chan, K.F. Man, K.S. Tang, S. Kwong, A jumping gene algorithm for multiobjective resource management in wideband CDMA systems, The Computer Journal 48 (6) (2005) 749–768; T.M. Chan, K.F. Man, K.S. Tang, S. Kwong, Multiobjective optimization of radio-to-fiber repeater placement using a jumping gene algorithm, in: Proceedings of the IEEE International Conference on Industrial Technology (ICIT 2005), Hong Kong, 2005, pp. 291–296; K.F. Man, T.M. Chan, K.S. Tang, S. Kwong, Jumping-genes in evolutionary computing, in: Proceedings of the IEEE IECON’2004, Busan, 2004, pp. 1268–1272]. JGGA is a relatively new multiobjective evolutionary algorithm (MOEA) that imitates a jumping gene phenomenon discovered by Nobel Laureate McClintock during her work on the corn plants. The main feature of JGGA is that it only has a simple operation in which a transposition of gene(s) is induced within the same or another chromosome in the genetic algorithm (GA) framework. In its initial formulation, the search space solutions are binary-coded and it inherits the customary problems of conventional binary-coded GA (BCGA). This issue motivated us to remodel the JGGA into RJGGA. The performance of RJGGA has been compared to other MOEAs using some carefully chosen benchmark test functions. It has been observed that RJGGA is able to generate non-dominated solutions with a wider spread along the Pareto-optimal front and better address the issues regarding convergence and diversity in multiobjective optimization. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملAn algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملOPTIMUM PLACEMENT AND PROPERTIES OF TUNED MASS DAMPERS USING HYBRID GENETIC ALGORITHMS
Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to reduce the response of buildings subject to lateral loadings such as wind and earthquake loadings. Although TMDs system has received much attention from researchers due to their simplicity, the optimization of properties and placement of TMDs is a challenging task. Most research studies consider optimization o...
متن کاملMonitoring process variability: a hybrid Taguchi loss and multiobjective genetic algorithm approach
The common consideration on economic model is that there is knowledge about the risk of occurrence of an assignable cause and the various cost parameters that does not always adequately describe what happens in practice. Hence, there is a need for more realistic assumptions to be incorporated. In order to reduce cost penalties for not knowing the true values of some parameters, this paper aims ...
متن کاملLearning paradigm based on jumping genes: A general framework for enhancing exploration in evolutionary multiobjective optimization
0020-0255/$ see front matter 2012 Elsevier Inc http://dx.doi.org/10.1016/j.ins.2012.11.002 ⇑ Corresponding author. E-mail address: [email protected] (S. Kwong) Exploration and exploitation are two cornerstones of evolutionary multiobjective optimization. Most of the existing works pay more attention to the exploitation, which mainly focuses on the fitness assignment and environmental selectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 177 شماره
صفحات -
تاریخ انتشار 2007